Statistics Gorner

Fundamental Issues in Experimental Design

The methods of statistical design of
experiments (DOE) canbe complex.
This complexity makes it seem that DOE
isan arcane science, needed only for spe-
cial circumstances and niot for the warp
and weft of engineering and scientific
practice. As a result, DOE still languish-
es as atoo-little used and appreciated dis-
cipline, even though these imethods were
developed more [ban 75 years ago by
R.A. Fisher and his colleagues. Thisisa
tragedy. One can only speculate at the
progress that could have been made and
the resources saved had DOE been
adopted as the standard approach to ex-
perimentation.

Adopting DOE dots not require that
annics Of statisticians be marshaled. As 1
mentioned in April’s column, the funda-
mental principles and methods are
straightforward and can easily bc aught
as part of basic science and math educa-
tion.! Every scienlist, engineer, and tech-
nologist—indeed, anyone wishing to in-
teract with science and technology -
should understand these fundamental
principles.

| do not know why conventional sci-
ence has been so resistantto DOE meth-
ods. Perhaps it is because DOE chal-
lenges fundamental scientific practices
(one-variabie-g[-a-time experimentation,
for example) or because science views
empirical model building as fundamen-
[aly different and inferior to the mecha-
nistic models of physics and engineering.
Perhaps itmight even be due to the poor
job statisticians have done in communi-
cating the powerful and elegant princi-
plesthat arc the redl essence of DOE.

Whatever the reason. ignoring DOE is
aloss. DOE is. in essence, a careful cx -
position of the scientific method. It is
fundamentally conccmed with how peo-
plelearn in a complex. interactive, and
noisy world—that is. in the real world. it
addresses the basic issues of what people
know and how they know it. Ignoring
such issues inevitably invites confusion
and incfficiency.

An elaboration and defense

In this and subsequent columns, | will
claborate on and defend the previous
statements. In doing so, I will avoid the
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conventional presentation of DOE as a
suite of parlor tricks that improve quality
and productivity. Instead, I will present
DOE as alogical and inevitable way to
deal with the world as it is. Denying
DOE's relevance denies basic realities
and thus compromises peopl€e’ s under-
standing and [he efficiency with which
[hey learn.

Although these columns will take on a
more philosophical bent than usual, |
hope that you will nevertheless find them
useful. If you already know about, prac-
tice. or teach DOE. | hope that these
columns will illuminate your knowledge
and help your efforts to convince others
[ouscit. If you do not use DOE, 1 hope
[hat they will compel you to learn more
about it.

Two scientific mantras

My concern here is with the scientific
feaming stratcgy—how t0 increase one's
knowledge of scientific phenomena. But
what, exactly, are scientific phenomena?
More precisely, what distinguishes scien-
tific phenomena from religion, art, phi-
losophy. emotion, favorite frozen yogurt
flavor, and everything €lsethat is not sci-
ence? Without engaging in a broad philo-
sophical debate,1 propose two general
distinguishing characteristics:

- Science is concemed with broadly ob-
servable phenomena.By (his, 1 mean
that given normal human sensory abil-
ities and the proper equipment, any-
one should be able [0 observe what is
being described.

Science is concerned with repeatable

phenomena. A unique cvent, no matter

how compelling or no molter how
many people ohserved it, iS simply not
science.

i know thatthesc principles stillleave
gray arcas. You might argue. for cxam-
ple. that personality is an unobservable
construct, but legitimate science never-
theless characterizes and studices it
through behavior. Or you might argue
that the meteorite that put a crater in your
back yard is certainly a unique event, but
as onc among a class of similar unique
events, itis certainlya phenomenon
amenable to scientific study. Clearly,
working out the details here falls into the
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hands of the philosophers-of science, and
1 do not presume any such expertise. So |
hope you will agree that observability
and repeatability arc, for the purposes
here, the essence of scientific matters.

Having said that, one arrives a the un-
derlying justification for DOE: Without
statistical thinking, the concepts of ob-
servability and repeatability arc inherently
contradictory. Anything that is observed
is observed with variability. Indeed, not
only does exactly the same event never
happen in exactly the same way twice,
but even repeated observations—-[ tis,
measurements—of the same event vary.
So what is meant when science demands
that an observation be repeatable? How
repeatable iSrepeatable? When is aresult
the same or different---confirmation or
contradiction? These questions cannot be
coherently addressed without the frame-
work of statistical thinking.

Let mc ducidate with a few examples:
Eurekal You think that you've just dis-
covered a ncw way to make semicon-
ductor chips that run cooler. Of
course, following the observability
principle, you've got to actually make
some of these new chips and observe a
temperature difference. But when you
make more than one, you discover that
they do not all run at exactly the same
temperature. In fact, although most
run cooler than the existing chips,
some of the existing chips are cooler
than some of the new ones. Do the
chips run cooler?
You've got a great new chocolate
soulfé recipe. The friend who gave it
to you says it'sreal easy and never
fails. You tryit. It fails! Being stout of
heart and chocolate of mind. you try it
again. Success! Sinceii’s chocolate,
you decide athird trial is called for.
Success again. Is the recipe foolproof?
(For science's sake, I note that a recent
article claims that chocolate has more
than 800 separate constituents, which
makesit probably the most complex
subslance in the human gustatory
spectnum.)

You arc creating a complex computer

model 10 describe the flow of blood

through small arteries. The fluid dy-
namic model requires the fluid friction
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and elasticity of the arterial walls as
input parameters (among others). Like
all measured physical constants, these
are known only within (he limits of
measurement precision. How does this
uncertainty propagate through your
model and affect its performance and
your conclusions? I s this uncertainty
inherent in any measured physica
constant? (Be wary: Textbook calcula-
tions don’'t always give exact answers.
Just because the fuzzinessisn't explic-
itly stated doesn’'t mean it's not there.)
What is the point of this litany?
Simply, that al observations involve un-
certainty. Therefore, to deal rationally
with the world as it is, you must define
what is meant by “same” or “different”
when all observations are blurred by
variability. Statistical thinking-DOE, in
particular-is required to do this.

The loglc underlyingstatistical
thinking: A simple comparative
experiment

So how does stetistics resolve these is-
sues? The underlying approach can be
clearly shown by considering a simple
comparative experiment. Since my pur-
pose is to focus on the concepts, not to
teach statistical methods, I will omit the
mathematical details, In any case, |
should add that there are actualy altema-
tive methods to this experiment and its
analysis that depend on the framework
that is chosen and the assumptions that
are made (such as the classical sampling,
Bayes, empirical Bayes, and decision
theories). Think of this in terms of how
different architects might approach a
home's design. An environmentalist
might design a house one way, an archi-
tect working for alarge builder another
way, and one who works for a cement
manufacturers’ association still a third
way. All of the houses would be func-
tiona, but the results would differ great-
ly. Of course, statistical approaches don’t
vary quite that much, but you should be
aware that there is no single right way to
tranglate the concepts discussed here into
specific methods.

Consider, then, the following compari-
son of two treatments. The treatments
might be two different suppliers of araw
material, two different working sched-
ules, two different drugs, two different
teachers, or two different flowmeter de-
signs. Along with the two treatments,
there are one or more outcome variables
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that are used to measure the goodness of
the treatments. Such measurements can
be subjective (e.g., the taste of frozen yo-
gurt on a l-to-5 scale), categorica (e.g.,
pass or fail), or a continuous measure-
ment (e.g., time, temperature, voltage, or
cost). The kind of measurement affects
both the details of the design and the
anaysis, but these matters are not of con-
cern here. To keep this example straight-
forward, assume that the outcome vari-
able is a continuous measurement.

How should you design the experi-
ment to determine which treatment gives
the better outcome? Of course, you can
always just test each treatment once and
compare the two outcomes. But if you
were to repeat the tests, each treatment
would give results that are somewhat dif-
ferent than what occurred previoudly. In
other words, you cannot assume that two
treatments are different when their out-
comes differ because outcomes will dif-
fer even when a single treatment is con-
tinually repeated. The same could be
said for averages if you repesat the tests
and compare the averages for the two
treatments. That is, if you were to repeat
the whole series, the next pair of aver-
ages would be different from the first

Therein lies both the crux of, and the
solution to, the dilemma:

The only logically coherent way of

determining whether (and how) the

treatments differ isto compare the
variation in results from repeated
tests in which the treatments actual-

ly change with the variationin re-

sults from repeated tests in which

the treatments don’t change.

In practica terms, this means that you
must use the variability that is seen within
each treatment group as a baseline to
judge the observed differences between
the two groups. The entire decision-mak-
ing edifice of statistics is built on this
simple, common-sense foundation.

You might not actualy test the two
treatments simultaneously. For example,
you might compare historical data on one
treatment with new tests on the second
treatment-but there are risks in doing
this. For example, other factors could
change that could also have an effect on
the results; thus, you risk confounding
the extraneous variation with differences
due to the treatments. Sometimes there
are ways to mitigate such possibilities,
but, inall cases, the replication principle
underlies the details.

The key idea behind replication is that
you must repeat the change to compare
the results that occur when the treatment
doesn’t change with the results that
occur when it does. As obvious as this
principle seems, it is often at least partial-
ly violated in practice. How often have
you heard, “There's no reason to spend
the time and effort to redo the tests. We
did it once, and we' ve seen what hap-
pens.”

To be fair, sometimes it is difficult or
impossible to obtain the kind of replica-
tions required to put the comparison on
firm footing. In fact, even when experi-
menters do replicate, they oftendo soina
way that compromises the integrity of the
conclusion, which can be seen in the fol-
lowing example.

Replication, real and imagined

Suppose that you want to compare
how fast two different weed killers de-
compose in soil. The outcome measure-
ment is obtained as follows: The chemi-
cals are mixed with severa different
types of soilsin plastic trays. The trays
are then placed outside at a test site. After
30 ddys, soil samples are taken from the
trays and the amount of chemica re-
maining in the soil is determined.

How should this procedure be carried
out to adhere to the replication principle?
The key ideaisthat you would like the
variability within the results for each
chemicd to be the same as the variability
in the results between the two sets, ex-
cept for the differences due to the differ-
ent chemicals. That way you can be sure
that any possible (statistical) changein
variability between groups is due to the
chemica and not something else. Let's
see what this means in terms of the nec-
essary experimental procedures:

Scenario 1: A large container of soil
type A is mixed with chemical No. iand
then poured into several trays. This pro-
cedure is then repeated with chemical
No. 2. The same set of proceduresis car-
ried out for soil types B, C, and D. If 10
trays are mixed for each chemical and
soil type, does this give four groups of 10
replicates for each soil type as the base-
line for comparison?

The answer is no. Replicates are sup-
posed to have the same variability be-
tween the groups, except for the different
treatments, but in this scenario, the two
treatments were mixed in each soil at dif-
ferent times. Variability could have been
introduced if the instrument used to mix

the soil was different or used differently.
if different people mixed the soils, or if
the humidity conditions were different.
Within each treatment, however, these
conditions were fixed, since large batch-
es were mixed al at once. Thus, the
preparation variability between the
chemicals could well be greater than the
preparation variability within the chemi-
cals. This means that any difference seen
between the chemicals might be due to
preparation factors instead of the differ-
ent chemicals.

How can you adhere to the replication
principle? Idealy, you would want to re-
duce the preparation variability between
the chemicals so that it matches the vari-
ability within the chemicals, but that is
impossible. One person cannot possibly
mix each chemical with each soil type si-
multaneously. Thus, you have to make
the preparation variability within the
chemicals the same as the preparation
variability between the chemicals. This
can be done by one person preparing
each tray separately, using the same
preparation procedures and tools. In
doing so, the same variation in mixing
factors will result within each chemical
as well as between the chemicals.

Of course, experts in these matters
might say that the effect of possible vari-
ation in mixing is so small that the extra
effort is unjustified (and they might well
be right). But, strictly speaking, what this
scenario describes is often called dupli-
cation, not real replication. Duplicates
look like replicates, but they exhibit less
variability than they should—and this
can compromise the conclusions that are
reached.

Scenario 2: Suppose that one person
prepares all 40 of the soil trays separate-
ly, using the same preparation procedures
and tools. After 30 days, he or she takes
soil samples from the trays containing
one weed killer to determine the amount
of chemical remaining and then repeats
this process for the trays containing the
second weed killer. Do these data pro-
vide for a clear comparison?

Again, the answer is no because the
measurement variability between the
chemicals is greater than the measure-
ment variability within the chemicals.
That is, they are duplicates with respect
to the measurement process, not the
preparation process. Y ou need to mea-
sure the results so that the variability due
to extraneous measurement noise within

(cont. on). | 11)
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each chemica and soil type is the same
as the measurement variability between
chemicals and soil types.

Scenario 3: Suppose that one person
prepares al 40 of the soil trays separate-
ly, using the same preparation procedures
and tools, and then randomly measures
the amount of chemical remaining in the
trays. Now do you have true replicates?

Surprisingly, the answer is stiil no be-
cause this experiment is omitting what is
probably the largest outside source of
variability that might affect the compari-
son. Do you know what it is?

The answer is that just one batch of
the first chemical is being compared with
just one batch of the second. The batch-
to-batch variability might be the largest
extraneous source of variability. Strictly
speaking, no matter what procedures are
used, all that can be concluded is that one
particular batch of the weed killer differs
from another particular batch. If you
wish to compare the first chemical in
general with the second chemical in gen-
eral—which, of course, you do—you
would have to replicate with several dif-
ferent batches of each chemical.

And therein lies the rub. Replication is
often difficult and sometimes impossible
to do because it severely compromises
the amount of experimentation that can
be done given limited time and re-
sources. For example, if the second weed
killer is an experimental batch beingtest-
ed for the first time, there very likely are
no other batches. Even if there are, they
are made in entirely different circum-
stances with entirely different batch-to-
batch variability characteristics than the
standard (production mode) batches. In
such cases, you have no choice but to
violate the replication principle.

When the replication principle is vio-
lated, it is important to understand what
the risks are and realize that the experi-
mental conclusions are, at best, tentative,
no matter how well buttressed they are
with statistical legerdemain. For those
familiar with some of my earlier tirades,
thisis yet another example of an analytic
study with which enumerative methods
alone cannot deal. Subject-matter exper-
tise and judgment must also be exercised.

Is there a better way fo deal with
replication?

Replication seems to violate what
experimenters are taught is sound
experimental practice: Conduct your

(cont. onp. 113)
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experiments in a way that minimizes ex -
perimental variability. Fortunately, [his is
still sound advice, butthe replication
principle demands thatthe variability be
minimized wuniformly over the proce-
dures. Reducing CXPcrimcntal variability
within treatments while having it remain
between lreatinents compromises [he in-
tegrity of the learning process. Different
results judged 10 be different because of
different treatments might only vary duc
to extraneous experimental variability.

From this discussion, it might appear
that experimenters must always conduct
comparative experiments in a way that
inflales within-treatment variability to
the same level as between-treatinent vari-
ability. Not only does this require extra
time and effort, butit also makes it more
difficult {0 draw clear conclusions.
Fortunately, variability inflation is only
one approach, probably the crudest,to
performing experiments that arc consis-
tent with the replication principle. A bet-
ter approach for reducing variability uses
blocking. 1 will talk about this in detail in
my August column, but let me suggest
one version of how itcould woik for the
weed killer experiment.

Inthe mixing procedure, instead of
mixing al 40 batches separately, you
could mix twotrays of each chemical
and soil type atatime (i.e., mix cight
trays at onetime), with the same mixing
instrument, operator, humidity condi-
tions, and so forth. This would berepeat-
cd five limesin all [0 get the same total of
40 trays. When analyzing the results, you

would [hen compare the differences
among chemicals and soil ()’[)CS among
the four pairs within the groups of eight,
thereby using this smaller expel-imenl[al
variability as the baseline for compari-
son. Formal analysis procedures should
[hen be used to combine the results from
these five overall replicates to draw the
overall conclusion. One classical, numer-
ical formal analysis procedureis analysis
of variance, or ANOVA, wi(h which
many readers are undoubltedly familiar.
In previous columns, however, 1 have
also shown how less formal graphical
methods—such as hierarchical do[
plots—can also bc used o engage pco-
ple’s innate paltern-recognition capabili-
ties to accomplish the sameend.

Onc important conclusion that can be
drawn from this discussion is thatthe
design of an experiment—the detailed
way in which it is conducted-dircc(ly
affects the conclusions thatcanbe
reached and the data analysis procedures
that must be used to reach [hem. C.artful
thought and planning should always be
devotedothe design of an experiment in
order to proceed in a way that maximizes
the usc of scarce resources, takes advan-
tage of all available ways torcduce
experimental variability, and, mostim-
portant, provides results that can be
coherently analyzed according tothe
replication principle. No data analysis,
no matter how sophisticated, can rescue a
badly designed experiment or produce
reliable infonnation when the replication
principle has been violated. That iswhy

statistical experimental design is so
importantand why it should become part
of all experimenters’ standard practice.
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